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Phase transition in a triplet process
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We argue that the reaction-diffusion procegs-34A,3A— 2A exhibits a different type of continuous phase
transition from an active into an absorbing phase. Because of the upper critical dimegsidf8 we expect
the phase transition in#11 dimensions to be characterized by nontrivial fluctuation effects.
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The classification of continuous phase transitions far frontiated with the voter universality clagd5]. Only in 1+1
thermal equilibrium is one of the most challenging tasks ofdimensions the two classes of models exhibit the same type
modern statistical physid4]. Within this field many studies of critical behavior.
are concerned with phase transitions from a fluctuating ac- Recently the pair contact process with diffusi¢tCPD,
tive phase into one or several nonfluctuating absorbinglso called annihilation-fission process, attracted consider-
states, which are believed to be associated with a finite nun@ble attention. The PCPD iskanary spreading process fol-
ber of universality classdg]. For such a phase transition to lowing the reaction-diffusion scheme
occur it is necessary thaf) at least one absorbing state is
dynamically accessible(b) there are two competing pro-
cesses for particle creation and removal, @&odthere is a
mechanism which prevents the particle density from diverg

ing.

nA—(n+1)A, nA—mA, D

with n=2m=1. It exhibits a continuous phase transition
and thus could serve as a candidate for another independent
In many cases, the critical behavior close to the transitiorﬁ;'vgrrzgtge%a;fi g]—hebEtCIi:t)Dt(\)A(l)?(S Z:ﬁggty ;ggggztrid ':rr‘] t?lgsz

1S char_a cterlz_ed by 5|mp_l_e power law scaling. I_n Suﬁchlenm./Howard and Taber presented a first systematic study of a
high dimensions the critical exponents are given by their, . . d ) .
mean-field values, whereas below a certain upper critical diposonlc variant of the procedd7]. Using field-theoretic

. . . pper cf methods they were able to prove the existence of a phase
mensiond, fluctuation corrections have to be taken into ac-

) o i _““"transition, although the corresponding field theory turned out

count, leading to nontrivial exponents and scaling functionsy, e ynrenormalizable. More recently, several authors stud-

F_or this reason the stud)_/ of qu_ctuatlon effects_, in Iovy dimen-ieq various fermionic variants of the PCHDS8—25. Mean-

sional, especially1+1)-dimensional systems is particularly yypile there is a general consensus that the critical behavior

Interesting. of the PCPD is different from all other previously known
The most important universality class of absorbing phasgniversality classes. However, it turned out to be extremely

transitions is directed percolatioDP), which occurs in  difficult to estimate the critical exponents in a reliable way,

all processes following the reaction-diffusion schememainly because of unusually strong deviations from ordinary

A—2A,A—J. The critical exponents, especially in one spa-power-law scaling.

tial dimension, are known to a very high precisi@j. The In the present study we investigate the question whether

critical behavior of DP can be described in terms of a renorfurther different types of critical behavior will emerge for

malizible field theory which was originally introduced in the >2. In particular we will focus on the case=3, called

context of high energy physi¢d]. DP is relevant for experi- triplet process. As will be shown below, we argue that this

mental applications such as catalytic reactipBf flowing  process exhibits yet another different type of critical behav-

sand[6], and spatiotemporal intermittency of magnetic fluidsior.

[7]. (a) Mean field approximatianin order to determine criti-
The other established class is the parity-conser¢i@  cal dimensiord, and the mean field critical exponents of the

universality class. This type of critical behavior is observedreaction-diffusion procesgl) for generalm<n, let us con-

in a large variety of models which can be divided into two sider a simple mean field theory. We expect this process to be

groups. The first group includes all parity-conserving particledescribed by the Langevin equation

processes8—11 such as branching-annihilating random

walks with two offspringA— 3A,2A—&. The second group dp(X,t)=ap"(x,t)— p" T (x,t) + DV2p(x,t) + {(X,1),

of models comprises spreading processes with two symmet- 2

ric absorbing states, including kinetic Ising modglg], in-

teracting monomer-dimer modgl3], as well as generalized which for n=1 reduces to the well-known Langevin equa-

versions of the Domany-Kinzel model and the contact protion for DP [26]. The first term accounts for both particle

cess[14]. In higher dimensions the second group of modelscreation and removal so that the parametptays the role of

describes branching-annihilatimgterfacesand can be asso- the reduced spreading probabiljty- p.. The second term is
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FIG. 1. One-dimensional triplet process at criticality starting L

with a fully occupied initial state. FIG. 2. The density of particleg(t) timest® (6=0.32) as a

function of time forp=0.6855, 0.6853, 0.6851, 0.6849, and 0.6847
the most relevant contribution preventing the particle densityrom top to bottom, averaged over 1500 runs on a system with 4096
from going to infinity, while the third term describes nearest-Sites. The best straight line is obtained #+0.32 andp=0.6851.
neighbor diffusion. o )

The noisel(x,t) takes the stochastic nature of particle while it is irrelevant abovel. where the mean field expo-
creation and removal into account. Its amplitude has to deD€nts(6) are expected to become exact. For DP=(u=1)
pend on the local density(x,t) since in the absorbing state We obtain the well-known resutt. =4, while for the PCPD
p=0 there are no density fluctuations. Thus it is near at hané€ upper critical dimension has to be in the ranged

to expect noise correlations of the form =<3. This result is in agreement with recent numerical find-
ings by Qlor et al. [25] suggesting thatl.=2.
(LX) Z(X" 1))y=TpH(x,t) 8%(x—x")8(t—t") (3 As the main observation, which triggered the present

work, we note that the upper critical dimension for third-
with an unknown exponeng. For DP (1=1), where the grder processesne3m<n,1<u<3) is larger than 4/3.
squared noise amplitude is proportional to the density of pParconsequently, in 1 dimensions such a triplet proced®)
ticles, this exponent is given by=1. Forn>1, however, should still be characterized by nontrivial fluctuation effects.
the Situation iS more inVOIVed. W|th0ut the branching prO'Moreover, the density in the inactive phase is known to de-
cess, i.e., deep in the inactive phase, the squared noise aghy asp(t)~ (Intt)2 This type of decay in the absorbing
plitude is proportional ta)p(x,t), henceu=n. At the tran-  phase differs from all other previously known universality
sition, however, the branching process may lead to positivg|asses of phase transitions into absorbing states, suggesting
correlations among the particles, increasing the intensity ofhat also the transition itself should belong to yet another
the noise and thereby reducing the valueuofAt criticality universality class.
we therefore expect to be in the range (b) Numerical simulationsin order to study the triplet
process numerically, we introduce a fermionic variant of the
reaction-diffusion proces€1) with n=3 and m=2. It
Solving the stationary mean field equatios 8p"— p"** we evolvgs by randgm—sequential updates and is defined by the
obtain the stationary densipy= a,/BgAance the critical point is following dynamic rules:
a.=0 and the density exponent®&" = 1. At the mean field ; -~
critical point the full Langevin equation should be invariant DA—AZ  withrate  (1-p)/2,

1s,u<n. (4)

under the scaling transformation AD—DA, (1-p)l2,
—A —AZ —ATX

X=AX =A% p= AT, ©) AAASAAD, (1-p)/2, ®)
where A is a dilatation factor whilez=v) /v, and y
=pBlv, are quotients of the three standard critical exponents. AAA—DAA,  (1-p)/2,
Comparing all terms except for the noise, scaling invariance
implies thatz=2 andy=2/n, i.e., AAAT—AAAA  pl2,

pYF=1, v/ =ni2, »}""=n. (6) DAAA—AAAA /2.

Moreover, we can check the relevance of the noise termi typicial space-time plot of the process at criticality is
which is responsible for fluctuation effects. By simple powershown in Fig. 1. As can be seen the process generates spa-
counting we find that the noise is relevant below the uppetiotemporal structures, possibly indicating the presence of
critical dimension fluctuation effects. Note that we tuned the rates for diffusion
and particle removal in the same way as in R28].
d=2+ 4-2p 7) Performing standard Monte Carlo simulatiofsze, e.g.,
¢ ' Ref.[2]) we find clear evidence for a continuous phase tran-
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sition between an active phase, where the density of particlesnly after 1¢ time steps, the accuracy of our estimate figr
is asymptotically constant, and an inactive phase, where this limited as well. In addition, the asymptotic power-law be-
particle density decays algebraically with logarithmic correc-havior may be shadowed by logarithmic corrections which
tions. Assuming that the critical behavior at the transitionare also present in the inactive phase. Finally, as in the case
obeys simple power law scaling we find the critical thresholdof the PCPD, the assumption of simple power-law scaling
p.=0.6851(4)(see Fig. 2 As in the PCPD, there are strong and the concept of universality may be questioned as a
corrections so that the scaling regime, if existent at all, is notvhole. Nevertheless, we believe that the MF arguments and
reached before fOtime steps. Averaging over many inde- the numerical evidence are strong enough to conclude that
pendent runs in the time interval 40t<10° we estimate this model exhibits a different type of critical behavior,
the critical exponents by where fluctuation effects are likely to play an important role.
Regarding the limited accuracy of numerical simulations
v|=2.52), z=1.7510), 6=p/»=0.321). (9  a major drawback could be the definition of the model as a
fermionic reaction-diffusion process with four-site interac-
tions. A bosonic variant with two-site interactions is cur-
rently under investigation. Moreover, it is important to deter-
mine the exponenj in the noise correlator. Preliminary

_ MF _ MF _ H :
=3,27"=2, and5™ =1/3, leading us to the conclusion that g jations suggest a value closeite-2. Finally, the influ-
critical behavior of the 1-dimensional TP is indeed char- once of the diffusion rate has to be studied systematically.

acterized by nontrivial fluctuation effects. As expected, these i
deviations are quite smalless than 20%) since the simula-  We would like to thank G. @or for numerous helpful
tions are carried out close to the upper critical dimension. discussions. This work was supported in part by the Korea

We note that our results are not accurate enough to doubResearch Foundation Grant No. KRF-2001-015-DP0120 and
lessly confirm the validity of power-law scaling over a large also in part by the Ministry of Education through the BK21
range. As our simulations seem to reach the scaling regimproject.

Similar exponents were obtained in other variants of the trip
let process withm<n= 3 (not reported heneln all cases the
estimates differ from the mean fieldF) exponentsy|'"
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